Midlands State University Library
Image from Google Jackets

Monitoring of the temperature–moisture regime in St. Martin’s Cathedral tower in Bratislava

By: Contributor(s): Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Verlag Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: Buildings are often composed of materials with a porous structure. Moisture in the masonry has a destructive impact caused by cycles of drying–wetting and freezing–thawing. A new sensor principle for monitoring moisture in the masonry is presented herein. This sensor utilizes changes in the thermal conductivity of porous structures when they are filled with moist air, water, or ice depending on the existing thermodynamic conditions. Herein, the “hot-ball” method is used to measure the thermal conductivity. The moisture sensor is prepared for porous material corresponding to the parent material, whether it is rock, brick, or concrete. This parent sample is taken from a borehole drilled into the wall. Methodology for moisture sensor calibration is also presented. Sensors were placed in the masonry walls of St. Martin’s Cathedral tower in the North, South, and West orientations. The sensors were placed in the plaster and bricks at depths up to 60 mm in the wall surface, just below the window sill. The temperature–moisture regime was monitored from August 19th, 2011 to March 30th, 2012. Changes in temperature and moisture were then correlated with meteorological data.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections GE105 ENV (Browse shelf(Opens below)) Vol.69 , No.4 (Jun 2013) Not for loan For In House Use Only

Buildings are often composed of materials with a porous structure. Moisture in the masonry has a destructive impact caused by cycles of drying–wetting and freezing–thawing. A new sensor principle for monitoring moisture in the masonry is presented herein. This sensor utilizes changes in the thermal conductivity of porous structures when they are filled with moist air, water, or ice depending on the existing thermodynamic conditions. Herein, the “hot-ball” method is used to measure the thermal conductivity. The moisture sensor is prepared for porous material corresponding to the parent material, whether it is rock, brick, or concrete. This parent sample is taken from a borehole drilled into the wall. Methodology for moisture sensor calibration is also presented. Sensors were placed in the masonry walls of St. Martin’s Cathedral tower in the North, South, and West orientations. The sensors were placed in the plaster and bricks at depths up to 60 mm in the wall surface, just below the window sill. The temperature–moisture regime was monitored from August 19th, 2011 to March 30th, 2012. Changes in temperature and moisture were then correlated with meteorological data.

There are no comments on this title.

to post a comment.