Midlands State University Library
Image from Google Jackets

Endocrine disrupting chemicals and human health risk assessment a critical review

By: Contributor(s): Material type: TextTextSeries: Critical reviews in environmental science and technology ; Volume , number ,Ohio Taylor & Francis 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: Concerns over the threats posed by a large number of molecules, collectively termed as endocrine disrupting compounds (EDCs) and generally known to alter and disrupt hormone systems and physiological functions, have often been expressed in academic and scholarly debates. From the perspective of classical toxicology, EDCs have genomic mechanisms of actions and exert agonistic or antagonistic effects on steroid receptors. They are also able to alter reproductive function by binding to estrogen or androgen receptors, and the neuroendocrine system by binding to the thyroid receptor. Recently, EDCs have been shown to have equally complex nongenomic mechanisms, altering steroid synthesis or steroid metabolism. As environmental contaminants, these molecules proved disruptively harmful for many wildlife species, particularly those from or depending on the aquatic ecosystem. An increasingly growing body of research has voiced further concerns that human populations are not immune from the dangers of EDCs. Studies from this line of research caution that EDCs can alter hormonal balance and that a whole range of breast and prostate cancers, endometriosis, cryptorchidism, and hypospadias have been linked to exposure to EDCs. This particular area has raised a lot of controversy and the literature on this subject often presents opposing, and sometimes conflicting, perceptions and perspectives. Accordingly, the authors aimed to contribute to the committed academic search for better appreciation of the topic. They first discuss the major natural and synthetic chemicals with endocrine disrupting properties to which humans and wildlife may be exposed. They then describe the key endocrine mechanisms of action and conclude by addressing the main observed effects in human and wildlife populations.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Concerns over the threats posed by a large number of molecules, collectively termed as endocrine disrupting compounds (EDCs) and generally known to alter and disrupt hormone systems and physiological functions, have often been expressed in academic and scholarly debates. From the perspective of classical toxicology, EDCs have genomic mechanisms of actions and exert agonistic or antagonistic effects on steroid receptors. They are also able to alter reproductive function by binding to estrogen or androgen receptors, and the neuroendocrine system by binding to the thyroid receptor. Recently, EDCs have been shown to have equally complex nongenomic mechanisms, altering steroid synthesis or steroid metabolism. As environmental contaminants, these molecules proved disruptively harmful for many wildlife species, particularly those from or depending on the aquatic ecosystem. An increasingly growing body of research has voiced further concerns that human populations are not immune from the dangers of EDCs. Studies from this line of research caution that EDCs can alter hormonal balance and that a whole range of breast and prostate cancers, endometriosis, cryptorchidism, and hypospadias have been linked to exposure to EDCs. This particular area has raised a lot of controversy and the literature on this subject often presents opposing, and sometimes conflicting, perceptions and perspectives. Accordingly, the authors aimed to contribute to the committed academic search for better appreciation of the topic. They first discuss the major natural and synthetic chemicals with endocrine disrupting properties to which humans and wildlife may be exposed. They then describe the key endocrine mechanisms of action and conclude by addressing the main observed effects in human and wildlife populations.

There are no comments on this title.

to post a comment.