Midlands State University Library
Image from Google Jackets

The random-threshold generalized unfolding model and its application of computerized adaptive testing created by Wen-Chung Wang, Chen-Wei Liu, Shiu-Lien Wu

By: Contributor(s): Material type: TextTextSeries: ; Volume , number ,Taiwan : Sage; 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: The random-threshold generalized unfolding model (RTGUM) was developed by treating the thresholds in the generalized unfolding model as random effects rather than fixed effects to account for the subjective nature of the selection of categories in Likert items. The parameters of the new model can be estimated with the JAGS (Just Another Gibbs Sampler) freeware, which adopts a Bayesian approach for estimation. A series of simulations was conducted to evaluate the parameter recovery of the new model and the consequences of ignoring the randomness in thresholds. The results showed that the parameters of RTGUM were recovered fairly well and that ignoring the randomness in thresholds led to biased estimates. Computerized adaptive testing was also implemented on RTGUM, where the Fisher information criterion was used for item selection and the maximum a posteriori method was used for ability estimation. The simulation study showed that the longer the test length, the smaller the randomness in thresholds, and the more categories in an item, the more precise the ability estimates would be.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

The random-threshold generalized unfolding model (RTGUM) was developed by treating the thresholds in the generalized unfolding model as random effects rather than fixed effects to account for the subjective nature of the selection of categories in Likert items. The parameters of the new model can be estimated with the JAGS (Just Another Gibbs Sampler) freeware, which adopts a Bayesian approach for estimation. A series of simulations was conducted to evaluate the parameter recovery of the new model and the consequences of ignoring the randomness in thresholds. The results showed that the parameters of RTGUM were recovered fairly well and that ignoring the randomness in thresholds led to biased estimates. Computerized adaptive testing was also implemented on RTGUM, where the Fisher information criterion was used for item selection and the maximum a posteriori method was used for ability estimation. The simulation study showed that the longer the test length, the smaller the randomness in thresholds, and the more categories in an item, the more precise the ability estimates would be.

There are no comments on this title.

to post a comment.