Using logistic approximations of marginal trace lines to develop short assessments created by Brian D. Stucky, David Thissen, Maria Orlando Edelen
Material type:
- text
- unmediated
- volume
Item type | Current library | Call number | Vol info | Copy number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | BF39 APP (Browse shelf(Opens below)) | Vol. 37, No. 1 pages 41-57 | SP17169 | Not for loan | For in-house use only |
Browsing Main Library shelves, Shelving location: - Special Collections Close shelf browser (Hides shelf browser)
Test developers often need to create unidimensional scales from multidimensional data. For item analysis, marginal trace lines capture the relation with the general dimension while accounting for nuisance dimensions and may prove to be a useful technique for creating short-form tests. This article describes the computations needed to obtain logistic approximations of marginal trace lines for graded response items derived from multidimensional bifactor item response theory (IRT) models. Next, the properties of marginal-trace-line-based likelihoods are evaluated and compared with other bifactor IRT methods. It is noted that for the dimension of interest, the likelihoods computed from marginal item response functions are not equivalent to the conditional likelihoods from the multidimensional IRT model. The authors then propose a method that evaluates the degree of item-level dimensionality and allows for the selection of subsets of items (i.e., short form) that result in scaled scores and standard errors that are equivalent to other multidimensional IRT-based scoring procedures. Finally, a real-data application is provided, which illustrates the utility of logistic approximations of marginal trace lines in the creation of a content-diverse short form.
There are no comments on this title.