Discrete displacement analysis for geographic linear features and the application to glacier termini. created by Joon Heo ,Seongsu Jeong,Soohee Han,Changjae Kim,Sungchul Hong &Hong-Gyoo Sohn
Material type:
- text
- unmediated
- volume
Item type | Current library | Call number | Vol info | Copy number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | G70.2 INT (Browse shelf(Opens below)) | Vol 27 .Nos. 7-8 pages 1631-1650 | SP17852 | Not for loan | For Inhouse use only |
Browsing Main Library shelves, Shelving location: - Special Collections Close shelf browser (Hides shelf browser)
The extent of glacier terminus displacement is instrumental in investigations of natural or artificial geographic changes. Its importance to earth science and engineering is reflected in the considerable efforts that have been devoted to the development of several boundary displacement analysis methods. Among the methods, the buffering-based approach compares favorably with other approaches in objectivity and robustness. However, it does not consider the relative positions of boundaries, because its buffering operation cannot determine features' relative directions. This limitation incurs inaccurate calculation results – underestimation of mean shifts and overestimation of shape variations, especially when the two compared boundaries intersect. Discrete displacement analysis (DDA), an alternative method that considers given geographic objects as a set of a finite number of points, is proposed here. In a series of tests carried out, including Jakobshavn glacier's calving front, DDA was found to correctly calculate mean shift and shape variation even in cases where the conventional buffering-based method failed. Moreover, this approach is independent of the dimension of space in which it is implemented, and thus is expected to be utilized for analysis of 3D geographic object displacement.
There are no comments on this title.