Quantifying local flow direction uncertainty created by Glenn O'Neil &Ashton Shortridge
Material type:
- text
- unmediated
- volume
Item type | Current library | Call number | Vol info | Copy number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | G70.2 INT (Browse shelf(Opens below)) | Vol 27 .Nos. 7-8 pages 1292-1311 | SP17852 | Not for loan | For Inhouse use only |
Absolute elevation error in digital elevation models (DEMs) can be within acceptable National Map Accuracy standards, but still have dramatic impacts on field-level estimates of surface water flow direction, particularly in level regions. We introduce and evaluate a new method for quantifying uncertainty in flow direction rasters derived from DEMs. The method utilizes flow direction values derived from finer resolution digital elevation data to estimate uncertainty, on a cell-by-cell basis, in flow directions derived from coarser digital elevation data. The result is a quantification and spatial distribution of flow direction uncertainty at both local and regional scales. We present an implementation of the method using a 10-m DEM and a reference 1-m lidar DEM. The method contributes to scientific understanding of DEM uncertainty propagation and modeling and can inform hydrological analyses in engineering, agriculture, and other disciplines that rely on simulations of surface water flow.
There are no comments on this title.