Midlands State University Library
Image from Google Jackets

Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources created by Maythm Al-Bakri and David Fairbairn

By: Material type: TextTextSeries: ; Volume , number ,Newcastle : Taylor & Francis, 2012Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: One difficulty in integrating geospatial data sets from different sources is variation in feature classification and semantic content of the data. One step towards achieving beneficial semantic interoperability is to assess the semantic similarity among objects that are categorised within data sets. This article focuses on measuring semantic and structural similarities between categories of formal data, such as Ordnance Survey (OS) cartographic data, and volunteered geographic information (VGI), such as that sourced from OpenStreetMap (OSM), with the intention of assessing possible integration. The model involves ‘tokenisation’ to search for common roots of words, and the feature classifications have been modelled as an XML schema labelled rooted tree for hierarchical analysis. The semantic similarity was measured using the WordNet::Similarity package, while the structural similarities between sub-trees of the source and target schemas have also been considered. Along with dictionary and structural matching, the data type of the category itself is a comparison variable. The overall similarity is based on a weighted combination of these three measures. The results reveal that the use of a generic similarity matching system leads to poor agreement between the semantics of OS and OSM data sets. It is concluded that a more rigorous peer-to-peer assessment of VGI data, increasing numbers and transparency of contributors, the initiation of more programs of quality testing and the development of more directed ontologies can improve spatial data integration.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Copy number Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections G70.2 INT (Browse shelf(Opens below)) Vol 26 .No.7-8 pages 1437-1456 SP14366 Not for loan For Inhouse use only

One difficulty in integrating geospatial data sets from different sources is variation in feature classification and semantic content of the data. One step towards achieving beneficial semantic interoperability is to assess the semantic similarity among objects that are categorised within data sets. This article focuses on measuring semantic and structural similarities between categories of formal data, such as Ordnance Survey (OS) cartographic data, and volunteered geographic information (VGI), such as that sourced from OpenStreetMap (OSM), with the intention of assessing possible integration. The model involves ‘tokenisation’ to search for common roots of words, and the feature classifications have been modelled as an XML schema labelled rooted tree for hierarchical analysis. The semantic similarity was measured using the WordNet::Similarity package, while the structural similarities between sub-trees of the source and target schemas have also been considered. Along with dictionary and structural matching, the data type of the category itself is a comparison variable. The overall similarity is based on a weighted combination of these three measures. The results reveal that the use of a generic similarity matching system leads to poor agreement between the semantics of OS and OSM data sets. It is concluded that a more rigorous peer-to-peer assessment of VGI data, increasing numbers and transparency of contributors, the initiation of more programs of quality testing and the development of more directed ontologies can improve spatial data integration.


There are no comments on this title.

to post a comment.