Midlands State University Library
Image from Google Jackets

Semantic similarity measurement based on knowledge mining: an artificial neural net approach created by Wenwen enwen Li , Robert Raskin and Michael F. Goodchild

By: Material type: TextTextSeries: ; Volume , number ,Taylor & Francis 2012Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Online resources: Summary: etween spatial objects. It combines a description logic based knowledge base (an ontology) and a multi-layer neural network to simulate the human process of similarity perception. In the knowledge base, spatial concepts are organized hierarchically and are modelled by a set of features that best represent the spatial, temporal and descriptive attributes of the concepts, such as origin, shape and function. Water body ontology is used as a case study. The neural network was designed and human subjects' rankings on similarity of concept pairs were collected for data training, knowledge mining and result validation. The experiment shows that the proposed method achieves good performance in terms of both correlation and mean standard error analysis in measuring the similarity between neural network prediction and human subject ranking. The application of similarity measurement with respect to improving relevancy ranking of a semantic search engine is introduced at the end.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Copy number Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections G70.2 INT (Browse shelf(Opens below)) Vol 26 .No.7-8 pages 1415-1435 SP14366 Not for loan For Inhouse use only

etween spatial objects. It combines a description logic based knowledge base (an ontology) and a multi-layer neural network to simulate the human process of similarity perception. In the knowledge base, spatial concepts are organized hierarchically and are modelled by a set of features that best represent the spatial, temporal and descriptive attributes of the concepts, such as origin, shape and function. Water body ontology is used as a case study. The neural network was designed and human subjects' rankings on similarity of concept pairs were collected for data training, knowledge mining and result validation. The experiment shows that the proposed method achieves good performance in terms of both correlation and mean standard error analysis in measuring the similarity between neural network prediction and human subject ranking. The application of similarity measurement with respect to improving relevancy ranking of a semantic search engine is introduced at the end.

There are no comments on this title.

to post a comment.