Midlands State University Library
Image from Google Jackets

An integrated approach for addressing geographic uncertainty in spatial optimization created by Ran Wei &Alan T. Murray

By: Material type: TextTextSeries: ; Volume , number ,Taylor and Francis 2012Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Summary: There exist many facets of error and uncertainty in digital spatial information. As error or uncertainty will not likely ever be completely eliminated, a better understanding of its impacts is necessary. Spatial analytical approaches, in particular, must somehow address data-quality issues. This can range from evaluating impacts of potential data uncertainty in planning processes that make use of methods to devising methods that explicitly account for error/uncertainty. To date, little has been done to structure methods accounting for error. This article develops an integrated approach to address data uncertainty in spatial optimization. We demonstrate that it is possible to characterize uncertainty impacts by constructing and solving a new multi-objective model that explicitly incorporates facets of data uncertainty. Empirical findings indicate that the proposed approaches can be applied to evaluate the impacts of data uncertainty with statistical confidence, which moves beyond popular practices of simulating errors in data.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Copy number Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections G70.2 INT (Browse shelf(Opens below)) Vol 26 .No.7-8 pages 1231-1249 SP14366 Not for loan For Inhouse use only

There exist many facets of error and uncertainty in digital spatial information. As error or uncertainty will not likely ever be completely eliminated, a better understanding of its impacts is necessary. Spatial analytical approaches, in particular, must somehow address data-quality issues. This can range from evaluating impacts of potential data uncertainty in planning processes that make use of methods to devising methods that explicitly account for error/uncertainty. To date, little has been done to structure methods accounting for error. This article develops an integrated approach to address data uncertainty in spatial optimization. We demonstrate that it is possible to characterize uncertainty impacts by constructing and solving a new multi-objective model that explicitly incorporates facets of data uncertainty. Empirical findings indicate that the proposed approaches can be applied to evaluate the impacts of data uncertainty with statistical confidence, which moves beyond popular practices of simulating errors in data.


There are no comments on this title.

to post a comment.