Thermal hydraulics aspects of liquid metal cooled nuclear reactors edited by Ferry Roelofs
Material type:
- text
- unmediated
- volume
- 9780081019801
- TK9203.M65 THE
Item type | Current library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
Zvishavane Mining Sciences Library Open Shelf | TK9203.M65 THE (Browse shelf(Opens below)) | 150799 | Available | BK131674 |
Includes bibliographical references and index.
Machine generated contents note: 1. Introduction / Thomas J. Dolan -- 1.1. Need for MSR -- 1.2. MSR origin and research curtailment -- 1.3. MSR activities -- 1.4. Fissile fuels -- 1.5. Thorium fuel advantages -- 1.6. Liquid fuel MSR -- 1.7. Advantages of liquid fuel MSR -- 1.8. MSR development issues -- 1.9. Tritium issues -- References -- 2. Electricity production / Thomas J. Dolan -- 2.1. Heat engines -- 2.2. Rankine cycles -- 2.3. Helium Brayton cycles -- 2.4. Supercritical CO2 Brayton cycles -- 2.5. Metal vapor combined cycles -- 2.6. Nuclear air Brayton power cycles -- 2.7. Summary -- References -- 3. Chemical fundamentals and applications of molten salts / Christopher Taylor -- 3.1. Introduction -- 3.2. Fundamental physicochemical properties of molten salts -- 3.3. Remote power sources -- 3.4. Heat exchangers and materials embrittlement challenges -- 3.5. High-temperature commercial applications -- 3.6. Actinide burning -- 3.7. Medical isotopes -- 3.8. Desalination -- 3.9. Optical applications -- 3.10. Summary and conclusions -- Acknowledgment -- References -- Further Reading -- 4. Reactor physics of MSR / Yoichiro Shimazu -- 4.1. Introduction -- 4.2. Interaction of neutrons with matter -- 4.3. Multiplication factor of chain reactions -- 4.4. Cross-sections -- 4.5. Reaction rate -- 4.6. Neutron energy distribution and Maxwell -- bolzmann distribution -- 4.7. Transport and diffusion of neutrons -- 4.8. Criticality equation -- 4.9. Kinetic equations -- 4.10. Monte Carlo method -- 4.11. Conclusion -- References -- 5. Kinetics, dynamics, and neutron noise in stationary MSRs / Victor Dykin -- 5.1. Introduction -- 5.2. The MSR model -- 5.3. The static equations -- 5.4. Space -- time-dependent transient during start-up -- 5.5. Dynamic equations in the frequency domain: neutron noise -- 5.6. The point kinetic approximation and the point kinetic component -- 5.7. The neutron noise in an MSR, induced by propagating perturbations -- 5.8. Conclusions -- Acknowledgment -- References -- 6. Thermal hydraulics of liquid-fueled MSRs / Alessandro Pini -- 6.1. Introduction -- 6.2. Preliminary approach to thermo-hydraulics of internally heated molten salts -- 6.3. Heat transfer and pressure losses -- 6.4. Effects of internal heat generation on natural circulation stability -- 6.5. Conclusions -- Acknowledgments -- Abbreviations -- References -- 7. Materials / Ian Scott -- 7.1. Molten salt -- 7.2. Solid fuels with molten salt coolants -- 7.3. Thorium fuel cycle -- 7.4. Moderators -- 7.5. Structural materials -- 7.6. Conclusions -- References -- 8. Chemical processing of liquid fuel / Jan Uhlir -- 8.1. Introduction -- 8.2. Processing of fresh liquid fuel for MSR -- 8.3. Reprocessing technology of MSR fuel -- 8.4. Gas extraction process -- 8.5. Fused salt volatilization -- 8.6. Molten salt/liquid metal extraction -- 8.7. Electrochemical separation processes -- 8.8. Vacuum distillation -- 8.9. MSR reprocessing flowsheets -- 8.10. Conclusions -- References -- 9. Environment, waste, and resources / Magdi Ragheb -- 9.1. Decay heat in the thorium cycle -- 9.2. Radiotoxicity in the thorium cycle -- 9.3. Nuclear waste from ThorCon type reactors -- 9.4. Resource utilization -- 9.5. Summary -- References -- 10. Nonproliferation and safeguards aspects of the MSR fuel cycle / Carl Hellesen -- 10.1. Introduction to nonproliferation and nuclear safeguards -- 10.2. The proliferation threat -- 10.3. Attractiveness of nuclear materials -- 10.4. Nuclear safeguards -- 10.5. Nonproliferation advantages and disadvantages with MSRs -- 10.6. Means of improving MSR fuel cycle proliferation resistance -- 10.7. Summary and conclusion -- References -- 11. Liquid fuel, thermal neutron spectrum reactors / Motoyasu Kinoshita -- 11.1. Development of molten salt reactor at ORNL -- 11.2. Current MSR designs after ORNL (FUJI) -- 11.3. Safety concepts of the MSR -- 11.4. Safety criteria of the MSR -- 11.5. MSR accident analysis -- 11.6. General design criteria for MSR design -- References -- 12. Fast-spectrum, liquid-fueled reactors / Yasuo Hirose -- 12.1. Carrier salt for the fast molten-salt reactor -- 12.2. U -- Pu fast MSR based on FLiNaK -- 12.3. Feasibility of the U -- Pu fast-spectrum molten-salt reactors using (Li, Na, K)F -- UF4 -- TRUF3 fuel salts -- Acknowledgments -- References -- 13. Solid fuel, salt-cooled reactors / Charalampos Andreades -- 13.1. Introduction: definition of the FHR concept -- 13.2. FHR designs: pool versus loop, fuel element shape, power -- 13.3. Plant-level features -- 13.4. Phenomenology unique to FHRs -- 13.5. Thermal-hydraulics -- 13.6. Chemistry and corrosion control -- 13.7. Neutronics -- 13.8. Tritium management -- 13.9. Safety analysis and licensing strategy -- 13.10. Summary -- References -- 14. Static liquid fuel reactors / Ian Scott -- 14.1. Pumped versus static fuel molten salt reactor -- 14.2. Potential advantages of static fueled reactors -- 14.3. Convective heat transfer in molten fuel salt -- 14.4. Fuel tube materials -- 14.5. Fission products and gases -- 14.6. Static molten salt-fueled reactor options -- 14.7. Thermal spectrum static molten salt reactors -- 14.8. Fuel cycle for stable salt reactors -- 14.9. Global mix of static fueled molten salt reactors -- References -- 15. Accelerator-driven systems / Eduardo D. Greaves -- 15.1. Introduction to accelerator-driven systems (ADS) -- 15.2. Accelerator Molten Salt Breeder (AMSB) -- 15.3. Fast subcritical MSR for MA incineration -- 15.4. Main characteristics of the subcritical MSR-B -- 15.5. Low-energy linear accelerator-driven subcritical assembly -- 15.6. Conclusions -- Acknowledgments -- References -- 16. Fusion -- fission hybrids / Evgeny P. Velikhov -- 16.1. Energy needs -- 16.2. Fast breeder reactors -- 16.3. Fusion -- fission hybrids -- 16.4. Thorium fuel cycle -- 16.5. Nuclear energy system -- 16.6. Actinide incineration -- 16.7. Molten salt hybrid tokamak -- References -- 17. Thorium molten salt reactor nuclear energy system (TMSR) / Zhimin Dai -- 17.1. Introduction -- 17.2. TMSR-LF -- 17.3. TMSR-SF -- 17.4. Summary -- 18. Integral molten salt reactor / Cyril Rodenburg -- 18.1. Introduction -- 18.2. Description of nuclear systems -- 18.3. Description of safety concept -- 18.4. Proliferation defenses -- 18.5. Safety and security (physical protection) -- 18.6. Description of turbine -- generator systems -- 18.7. Electrical and I&C systems -- 18.8. Spent fuel and waste management -- 18.9. Plant layout -- 18.10. Plant performance -- 18.11. Development status of technologies relevant to the NPP -- 18.12. Deployment status and planned schedule -- Further reading -- Appendix: Summarized technical data -- 19. ThorCon reactor / Lars Jorgensen -- 19.1. Need for deployment -- 19.2. Modular power plant -- 19.3. Safety features -- 19.4. Maintenance -- 19.5. MSR vs. coal -- 19.6. Construction speed -- Reference -- 20. Safety assessment of the molten salt fast reactor (SAMOFAR) / Jan L. Kloosterman -- 20.1. Objectives of the project -- 20.2. The concept of the molten salt fast reactor -- 20.3. Main research themes -- 20.4. The SAMOFAR consortium -- 21. Stable salt fast reactor / Ian Scott -- 21.1. Design principles -- 21.2. Design outline -- 21.3. Fuel salt -- 21.4. Primary coolant salt -- 21.5. Secondary heat transfer loop and steam island -- 21.6. Fuel management and refueling -- 21.7. Neutronics and reactivity control -- 21.8. Decay heat removal -- 21.9. Waste and spent fuel management -- 21.10. Breeding potential -- 21.11. Conclusions -- 22. Transatomic Power / Leslie Dewan -- 22.1. Introduction -- 22.2. Fuel utilization in liquid-fueled reactors -- 22.3. Fission product removal and reactor fuel utilization -- 22.4. A new take on reactivity control -- 22.5. Depletion calculations with movable moderator rods -- 22.6. Waste reduction -- 22.7. Conclusion -- 22.8. Appendix A: calculation details -- 22.9. Appendix B: leakage considerations -- 22.10. Appendix C: isotopic evolution -- References -- 23. Copenhagen Atomics waste burner / Thomas J. Pedersen -- 23.1. Reactor design choices -- 23.2. Mechanical design choices -- 23.3. Recycling of spent nuclear fuel -- 23.4. Molten salt reactor research -- 23.5. "Prime minister safety" -- References -- 24. Molten salt thermal wasteburner / Esben Klinkby -- 24.1. Introduction -- 24.2. Design overview -- 24.3. Safety and operation -- 24.4. Plant arrangement -- 24.5. Design and licensing status -- 24.6. Plant economics -- 25. Dual-fluid reactor / Fabian Herrmann -- 25.1. The dual-fluid technology -- 25.2. Fuel cycle: the pyroprocessing unit -- 25.3. Applications -- 25.4. Electricity production -- 25.5. Synthetic fuels -- 25.6. Hydrazine for combustion and fuel cells -- 25.7. Silane -- 25.8. Other applications -- 25.9. Structural materials -- 25.10. Energy return on investment -- 25.11. Key properties of the DFR (3 GWth, 1.5 GWel) -- 25.12. Comparison with other reactor types -- References -- 26. Worldwide activities -- 26.1. Australia / Lyndon Edwards -- 26.2. Canada / Cyril Rodenburg -- 26.3. Czech Republic / Jan Uhhr -- 26.4. China / Zhimin Dai -- 26.5. Denmark / Thomas J. Pedersen -- 26.6. France / Sylvie Delpech -- 26.7. Germany / Andrei Rineiski -- 26.8. India / R.K. Sinha
"Molten Salt Reactors is a comprehensive reference on the status of molten salt reactor (MSR) research and thorium fuel utilization. There is growing awareness that nuclear energy is needed to complement intermittent energy sources and to avoid pollution from fossil fuels. Light water reactors are complex, expensive, and vulnerable to core melt, steam explosions, and hydrogen explosions, so better technology is needed. MSRs could operate safely at nearly atmospheric pressure and high temperature, yielding efficient electrical power generation, desalination, actinide incineration, hydrogen production, and other industrial heat applications. Coverage includes: Motivation -- why are we interested? Technical issues - reactor physics, thermal hydraulics, materials, environment, ... Generic designs -- thermal, fast, solid fuel, liquid fuel, ... Specific designs - aimed at electrical power, actinide incineration, thorium utilization, ... Worldwide activities in 23 countries. Conclusions: This book is a collaboration of 58 authors from 23 countries, written in cooperation with the International Thorium Molten Salt Forum. It can serve as a reference for engineers and scientists, and it can be used as a textbook for graduate students and advanced undergrads. Molten Salt Reactors is the only complete review of the technology currently available, making this an essential text for anyone reviewing the use of MSRs and thorium fuel, including students, nuclear researchers, industrial engineers, and policy makers.Written in cooperation with the International Thorium Molten-Salt Forum Covers MSR-specific issues, various reactor designs, and discusses issues such as the environmental impact, non-proliferation, and licensingIncludes case studies and examples from experts across the globe"
There are no comments on this title.