Time series regression on integrated continuous-time processes with heavy and light tails
Fasen, Vicky Maria
Time series regression on integrated continuous-time processes with heavy and light tails created by Vicky Fasen - Econometric theory Volume 29, number 1 .
The paper presents a cointegration model in continuous time, where the linear combinations of the integrated processes are modeled by a multivariate Ornstein–Uhlenbeck process. The integrated processes are defined as vector-valued Lévy processes with an additional noise term. Hence, if we observe the process at discrete time points, we obtain a multiple regression model. As an estimator for the regression parameter we use the least squares estimator. We show that it is a consistent estimator and derive its asymptotic behavior. The limit distribution is a ratio of functionals of Brownian motions and stable Lévy processes, whose characteristic triplets have an explicit analytic representation. In particular, we present the Wald and the t-ratio statistic and simulate asymptotic confidence intervals. For the proofs we derive some central limit theorems for multivariate Ornstein–Uhlenbeck processes.
Time series regression
HB139.T52 ECO
Time series regression on integrated continuous-time processes with heavy and light tails created by Vicky Fasen - Econometric theory Volume 29, number 1 .
The paper presents a cointegration model in continuous time, where the linear combinations of the integrated processes are modeled by a multivariate Ornstein–Uhlenbeck process. The integrated processes are defined as vector-valued Lévy processes with an additional noise term. Hence, if we observe the process at discrete time points, we obtain a multiple regression model. As an estimator for the regression parameter we use the least squares estimator. We show that it is a consistent estimator and derive its asymptotic behavior. The limit distribution is a ratio of functionals of Brownian motions and stable Lévy processes, whose characteristic triplets have an explicit analytic representation. In particular, we present the Wald and the t-ratio statistic and simulate asymptotic confidence intervals. For the proofs we derive some central limit theorems for multivariate Ornstein–Uhlenbeck processes.
Time series regression
HB139.T52 ECO